Welcome New Members! We want to hear from you. Register, stop lurking and start posting!

The sun and the climate

Archived climatology topics are located here.
Locked
S
SunsetTwilight
Stratus
Reactions:
Posts: 13
Joined: Sat Nov 13, 2010 10:01 pm
Location: Sheffield, South Yorkshire UK

The sun and the climate

Post by SunsetTwilight »

Last year i did a bit of research, i also posted this on a few other forums, so i shall post it on here too.

If you look at this there are no sunspots at all.
Image

If the sun continues like this with no sunspots or few active regions then we could possibly go into an ice age.

Possibly be causing all this rain and cloud (it sure has for the UK)

With greater sunspot activity there will be elss cloud cover and maybe higher temperatures near the Earth's surface, as cosmic rays can make it through, when the sun has solar flare activity.
Cloudless skies and solar activity has been observed for many many years. And having a low solar cycle there has been a mini ice age.
The solar flare cause solar storms that shield the earth a bit. This causes the clouds to form - maybe!? But the high level of solar flare, blow away the cloud cover, causing the earth to get a sun burn!
So maybe! No sunspots = rain? which will cause flooding and horrible summers.

2009 total: 260 days (71%)
Since 2004: 813 days
Typical Solar Min: 486 days

Take a look at this
http://en.wikipedia.org/wiki/River_Thames_frost_fairs" onclick="window.open(this.href);return false;

This happened when we had an all time solar low. Nothing but solid ice for miles on end.
If we do have an ice age, it will cool down gradually and will eb a long term thing and not happen straight away. I hope!
The solar cycle happens every 11 years. The next 6 years is predicted to be at it's lowest.

Maybe we could see the ice age in the next 10 years. Maybe it's the sun causing global warming and not us?

http://en.wikipedia.org/wiki/File:Sunspot_Numbers.png" onclick="window.open(this.href);return false;
The red is very high solar activity.
The chart will change as we go into the cooling period. But until we observe the effects, can we prove it?

http://solarscience.msfc.nasa.gov/image ... dict_l.gif" onclick="window.open(this.href);return false;
By that chart we could be in an ice age by 2020.
In a severe lightning storm, grab ya ankles and stick ya butt in the air.
User avatar
Karl Lijnders
Tornadic Supercell
Reactions:
Posts: 5771
Joined: Sun Nov 22, 2009 11:17 pm
Location: Knoxfield, Victoria

Re: The sun and the climate

Post by Karl Lijnders »

How absolutely fascinating! I did have a conversation with AV about this on the phone. Perhaps getting ready for a bit of a chill!! :D
Former Owner - The Australian Weather Forum. Email me anytime - weatherman1000@hotmail.com
User avatar
Anthony Violi
Supercell
Reactions:
Posts: 2652
Joined: Mon Nov 23, 2009 9:03 pm
Location: Lilydale
Contact:

Re: The sun and the climate

Post by Anthony Violi »

Yes well the sun is the biggest driver of our climate. Its been quiet of late and experts are saying that a cooling spell is imminent. There is a lag though so we wont notice the real effects for some time. But we are still infantile of our knowledge on all things climate so its fascinating nonetheless.
http://www.therealworldweatherforum.com" onclick="window.open(this.href);return false;

avweatherforecasts.com
d
droughtbreaker
Supercell
Reactions:
Posts: 2844
Joined: Wed Nov 25, 2009 7:50 pm
Location: Mount Macedon, VIC, 520m asl

Re: The sun and the climate

Post by droughtbreaker »

I know very little about this, but I know it has made no contribution to our wet year this year over most of Australia. La Nina is responsible for that.

It will be interesting to see the impact a very quiet sunspot period will have on our climate though. Global warming is not the only factor influencing our climate. The sun activity cycles, possible volcanic eruptions, long term global ocean temp cycles (such as PDO) etc. all have temporary impacts.
User avatar
Anthony Violi
Supercell
Reactions:
Posts: 2652
Joined: Mon Nov 23, 2009 9:03 pm
Location: Lilydale
Contact:

Re: The sun and the climate

Post by Anthony Violi »

As far as i have gathered Andrew from other forums, there is a lag time between Solar Activity decreases and temps. Apparently the real cooling will begin around 2015 onwards. The other very interesting comment i heard was that such a dormant period could lead us back into a little ice age.

All very interesting, but at the end of the day there are thousands of contributions to our overall climate, and many more thousands yet that we havent even discovered.
http://www.therealworldweatherforum.com" onclick="window.open(this.href);return false;

avweatherforecasts.com
User avatar
Anthony Violi
Supercell
Reactions:
Posts: 2652
Joined: Mon Nov 23, 2009 9:03 pm
Location: Lilydale
Contact:

Re: The sun and the climate

Post by Anthony Violi »

I shudder to think how cold we will go as the lag time is placed at 5 years by those on the Solar Cycle 24 forum..
http://www.therealworldweatherforum.com" onclick="window.open(this.href);return false;

avweatherforecasts.com
User avatar
Anthony Violi
Supercell
Reactions:
Posts: 2652
Joined: Mon Nov 23, 2009 9:03 pm
Location: Lilydale
Contact:

Re: The sun and the climate

Post by Anthony Violi »

http://www.telegraph.co.uk/comment/colu ... -game.html" onclick="window.open(this.href);return false;
http://www.therealworldweatherforum.com" onclick="window.open(this.href);return false;

avweatherforecasts.com
User avatar
Supercellimpact
Supercell
Reactions:
Posts: 1238
Joined: Thu Oct 07, 2010 8:39 pm
Location: Bendigo

Re: The sun and the climate

Post by Supercellimpact »

Very interesting that arctile!!!
User avatar
Supercellimpact
Supercell
Reactions:
Posts: 1238
Joined: Thu Oct 07, 2010 8:39 pm
Location: Bendigo

Re: The sun and the climate

Post by Supercellimpact »

User avatar
Anthony Violi
Supercell
Reactions:
Posts: 2652
Joined: Mon Nov 23, 2009 9:03 pm
Location: Lilydale
Contact:

Re: The sun and the climate

Post by Anthony Violi »

Yep, its the sun, who'd have thought?

http://theresilientearth.com/?q=content ... discovered" onclick="window.open(this.href);return false;

The influence of the Sun on Earth’s climate over time scales of centuries and millennia is all but ignored by current climate change dogma, with many climate scientists dismissing solar variation as too feeble to have much of an impact. Though it was recently discovered that variation at ultraviolet wavelengths is considerably greater than at lower frequencies, the change in total solar irradiance over recent 11-year sunspot cycles amounts to <0.1%. New research on longer time scales finds the change in total irradiance sufficient to affect the dynamics of the El Niño–Southern Oscillation (ENSO). Detailed model studies of the Little Ice Age (~1400 to 1850 AD) conclude that the Sun controls an “ocean dynamical thermostat” that affects climate variability over large regions of the globe. It was also found that fully coupled general circulation models (GCMs), the kind used by the IPCC to make predictions of future global warming, lack a robust thermostat response. This means that the sensitivity of the climate system to solar forcing is underestimated by current GCMs—the climate models are proven wrong again.

A report in the December 3, 2010, issue of Science has reinforced what many scientists have suspected all along: variation in the Sun's output causes significant change in Earth's climate. Writing in “Dynamical Response of the Tropical Pacific Ocean to Solar Forcing During the Early Holocene,” Thomas M. Marchitto, Raimund Muscheler, Joseph D. Ortiz, Jose D. Carriquiry and Alexander van Geen present a high-resolution magnesium/calcium proxy record of Holocene sea surface temperature (SST) from off the west coast of Baja California Sur, Mexico. Their work is in agreement with the theoretical “ocean dynamical thermostat” response of ENSO to radiative forcing. Here is their description of the work:

The influence of solar variability on Earth’s climate over centennial to millennial time scales is the subject of considerable debate. The change in total solar irradiance over recent 11-year sunspot cycles amounts to <0.1%, but greater changes at ultraviolet wavelengths may have substantial impacts on stratospheric ozone concentrations, thereby altering both stratospheric and tropospheric circulation patterns. Estimates of the secular increase in total irradiance since the late 17th century Maunder sunspot minimum range from ~0.05 to 0.5%. Values in the middle of this range are sufficient to force the intermediate-complexity Zebiak-Cane model of El Niño–Southern Oscillation (ENSO) dynamics into a more El Niño–like state during the Little Ice Age (A.D. ~1400 to 1850), a response dubbed the “ocean dynamical thermostat” because negative (or positive) radiative forcing results in dynamical ocean warming (or cooling, respectively) of the eastern tropical Pacific (ETP). This model prediction is supported by paleoclimatic proxy reconstructions over the past millennium. In contrast, fully coupled general circulation models (GCMs) lack a robust thermostat response because of an opposing tendency for the atmospheric circulation itself to strengthen under reduced radiative forcing.

A number of things stand out here. First, irradiance changes that have been dismissed by some in the CO2 fan club were shown to be sufficient to drive changes in the ENSO. Much like the atmospheric solar heat amplifier found previously, seemingly minor changes in solar output can cause big changes here on Earth. Because the Pacific region is so large, any thing that affects the ENSO also affects climate world wide.

Second, the response is the reverse of what you might think. An increase in total irradiance causes the waters of the eastern tropical Pacific to cool. Conversely, a reduction in solar output causes the circulation patterns to change in such a way that the sea surface temperatures (SST) rise. This is an example of negative feedback, where the response to a signal is in opposition to the expected change engendered by that signal. Negative feedback loops have been compared to thermostatically controlled temperature in a house.

When the internal temperature of the house drops drops below the temperature at which the thermostat is set, the thermostat turns on the furnace. As the temperature within the house rises, the thermostat again senses this change and turns off the furnace when the internal temperature reaches the pre-set point. There are many such control loops found in nature—the regulation of body temperature for example. Here the result is to maintain stability to the planet's temperature in the face of variation in solar forcing, hence the designation “ocean dynamic thermostat.”

Naturally, temperature and solar radiation history is based on proxy data, primarily from sediment cores. Specifically, Marchittoet al. measured the SST proxy Mg/Ca in the planktonic foraminifer Globigerina bulloides. In addition to G bulloides, data from other planktonic organisms, representing other locations, were included and are shown in the figure below.

Image


SST reconstructions based on Mg/Ca in surface-dwelling planktonic foraminifera.
Note that the temperature reconstructions contain signals from other forcings besides the Sun. The data had to be corrected to compensate for orbital-scale changes—variation in irradiance patterns caused by Earth's shifting orbital parameters. To estimate the level of solar activity, the researchers used the cosmogenic nuclide proxies 14C and 10Be, isotopes formed by cosmic ray collisions with atoms in the atmosphere.

“An active Sun generates a higher total irradiance and a stronger interplanetary magnetic field that helps to shield Earth from the galactic cosmic rays that produce 14C and 10Be in the atmosphere,” state the authors, though they note that significant uncertainties in such estimations exist: “atmospheric levels of 14C may be affected by changes in Earth’s carbon cycle, 10Be fluxes from ice sheets may be influenced by local climate, and the production rates of both nuclides are modulated by long-term variations in Earth’s magnetic field.”

Why does all this matter? La Niña has historically been associated with stronger summer monsoons over Asia, as both are linked to strong easterlies over the tropical Pacific. Solar forcing of La Niña and persistent, decadal-scale droughts over the southwestern United States indicates a connection between solar-activity maxima and dry conditions. “Taken together with our SST record, these observations are consistent with solar-induced dynamical cooling of the ETP and provide predictions for millennial-scale fluctuations in the hydrologic balance over the western United States during the early Holocene,” the authors state.

Image


The three phases of the ENSO.
But it is not just Asia and North America that are affected by the ENSO. Keep in mind that the Pacific Ocean covers a major portion of the globe. The massive amounts of moisture being pumped into the atmosphere in the tropical Pacific are a major part of world climate. Changes in the ENSO can influence temperatures and precipitation worldwide. In atmospheric science speak the ENSO and climate oscillation around the the world are teleconnected.

Teleconnection in atmospheric science refers to climate anomalies being related to each other at large distances, typically thousands of kilometers. Identifying teleconnections is fundamental in understanding climate variability, otherwise climate oscillations can seem random and unpredictable. Marchitto et al. claim that solar variation is directly linked to teleconnections among regions of the Pacific. The correlation between irradiance and climate change is shown in the figure below.


Image


Teleconnected climatic and solar proxy records spanning the early Holocene.
The third and final point is that the paper's authors specifically comment on the inability of current GCM computer models to capture this climatic response. The upshot is that the response of Earth's climate system to changes in solar radiation has been under estimated. Here is how the author's concluded the paper:

GCMs fail to reproduce the La Niña–like nature of the MWP because the ocean thermostat mechanism is either absent or dampened by atmospheric effects in such models. If our observations are supported by future SST reconstructions from the equatorial Pacific, then it is possible that the sensitivity of the climate system to solar forcing is underestimated by current GCMs. The nature of the climate response appears to be one of shifting atmosphere-ocean circulation patterns, with the tendency for global radiative surface warming being countered by the ocean dynamical thermostat.

This new work indicates that even small variations in the Sun's output can have significant affect here on Earth. This is unsurprising, since the energy that drives Earth's climate comes from the Sun. Monsoon floods and decades long droughts are both part of the natural variation driven by our neighborhood star, but every climate fluctuation that causes human discomfort is blamed on anthropogenic global warming. Floods in Pakistan, blizzards in Paris and New York, typhoons in the Philippines are all blamed on human CO2 emissions. What utter rubbish—it's the Sun, you bloody fools!

Scientists are constantly making new discoveries, uncovering new evidence that reveals complexities in the climate system that were not even suspected a few years ago. Yet the cheering section for predicted global warming disaster continue to insist that the consensus view (ie. their view) of climate science is correct. This is yet another example of how incomplete climate science is and how inaccurate the computer climate models used by the IPCC and other climate change catastrophists are. In the face of new revelations, the old CO2-centric view of climate change is laughable and computer model predictions based on that view absurd
http://www.therealworldweatherforum.com" onclick="window.open(this.href);return false;

avweatherforecasts.com
Locked